
La automazione
Dalle macchine semplici alle macchine programmabili
Scheda 3
Il calcolatore
1. Dalla calcolatrice al calcolatore
2. Ambienti di programmazione
3. Automatizziamo qualche procedimento di calcolo in JavaScript
4. Esercizi

 Sintesi

1. Dalla calcolatrice al calcolatore
 Alle calcolatrici non programmabili possiamo far eseguire solo una catena di operazioni di:
 • addizione, moltiplicazione, … ,
 • calcolo di altre funzioni il cui programma è stato incorporato dal costruttore,
 • immagazzinamento o estrazione di dati da una "memoria".
 A un calcolatore (o computer o macchina calcolatrice programmabile) possiamo far gestire l'esecuzione di un generico algoritmo che
gli possiamo descrivere in un opportuno linguaggio "comprensibile" da esso: un algoritmo così descitto si chiama programma.
 Molti computer tascabili (o pocket computer) e tutti i calcolatori di maggiori dimensioni sono in grado di eseguire il seguente
programma (1.1) scritto in linguaggio Basic:

(1.1)
10 INPUT T
20 K=100/T
30 INPUT D
40 PRINT D*K
50 GOTO 30

l'utente deve battere totale

l'utente deve battere dato

 È facile comprendere il significato di questo programma, che ha la forma di una sequenza di istruzioni numerate. PRINT in inglese
significa "stampa"; GOTO deriva dall'inglese "go to", che significa "vai a". La parola "input", che abbiamo già usato, indica qualcosa che
entra in una macchina (energia, informazioni, …); in questo caso INPUT viene usato per dire al calcolatore di attendere che l'utente batta
un numero. Se non hai idea di come funzioni il programma puoi cliccare qui.
 Per poter eseguire un programma come (1.1), il computer deve essere in grado di memorizzare il testo del programma, cioè, nel caso di
(1.1), la seguente sequenza di caratteri, dove con "◊" e " " abbiamo indicato lo spazio bianco (pressione della barra spaziatrice) e l'"a
capo", caratteri normalmente invisibili:

10◊INPUT◊T 20◊K=100/T 30◊INPUT◊D 40◊PRINT◊D*K 50◊GOTO◊30
 Come le usuali CT memorizzano i numeri sotto forma di sequenze di bit, così un computer memorizza sotto forma di una sequenza di
bit anche il testo del programma, utilizzando uno specifico codice.
 Deve, inoltre, essere in grado di leggere (la sequenza di bit con cui ha codificato) il programma e decidere, man mano, quale
operazione eseguire: una memorizzazione, un richiamo dalla memoria, un calcolo o una visualizzazione (operazioni che nelle CT non
programmabili vengono comandate direttamente da tastiera), o un trasferimento dell'esecuzione a un altro punto del programma.
 Per fare tutto ciò il computer deve avere:
• un "programma incorporato" per codificare il "programma battuto dall'utente",
• un dispositivo di memorizzazione in cui registrare il il programma codificato,
• un certo numero di memorie-utente da associare alle variabili (T, K, D, …) e
• un ulteriore "programma incorporato" per tradurre il programma codificato nell'azionamento dei vari dispositivi di calcolo,
memorizzazione, … .
 Il Basic risale al 1964. Esistono linguaggi di programmazione più sofisticati. Sotto a sinistra, si vede come il programma (1.1) può
essere riscritto usando il QBasic.. A destra è presentata una stesura del programma in un altro linguaggio, una versione di Pascal (il
nome, Pascal, deriva da quello del famoso filosofo e scienziato francese - vedi - che, nella prima metà del 1600, inventò una delle
prime calcolatrici da tavolo, per fare addizioni e sottrazioni).

(1.2)

INPUT Tot
k = 100/Tot

Introduzione:

INPUT dato
PRINT dato*k

GOTO Introduzione

 program Percentuali;
var tot, k, dato: real;
label 10;
begin
 readln(tot);
 k:=100/tot;
10: readln(dato);
 write(dato*k);
 goto 10
end.

 Esistono, infine, linguaggi di programmazione incorporati in tutti i browser. Con
essi sono redatti i programmi che usiamo per cercare l'orario di un treno, prenotare
un posto al cinema, …. Uno dei più usati tra essi è JavaScript (in breve, JS), di cui
abbiamo già discusso qui e in cui sono redatti tutti gli "script" presenti in queste
schede di lavoro. Il programma precedente assume la forma dello script Perc,
visualizzato a lato dopo aver calcolato 62/720·100.

file:///C:/Users/dapue/Documents/macosa/schede/la3/la3bn.htm
file:///C:/Users/dapue/Documents/macosa/diz/p2.htm#p2487
file:///C:/Users/dapue/Documents/macosa/schede/ls2/ls_b.htm#js
file:///C:/Users/dapue/Documents/macosa/js/percent.htm

 Sotto è illustrato come è stato realizzato il programma, che potete visualizzare usando un opportuno comando del browser ("visualizza
sorgente pagina", "html", … o altro, a seconda del browser che state impiegando). Osservazione: i comandi <i> e </i> racchiudono il
testo che si vuole mettere in corsivo.

<head>
<script language="javascript">
function Calcola() {
t = document.Perc.t.value; d = document.Perc.d.value;
document.Perc.p.value = Number(100/t*d) }
</script>
</head>
 (1.3)
<center>
<form name="Perc">
Metti <i>Totale</i> e <i>Dato</i>. Clicca e ottieni <i>Percentuale</i>

(arrotonda il risultato!)

Totale = <input type="text" name="t" value="" size=25>
Dato = <input type="text" name="d" value="" size=25>

<input type="button" value="clicca" onClick="Calcola()">
Percentuale = <input type="text" name="p" value="" size=25> (%)

</form>
</center>

Potete provare ad usare il programma (e ad esplorarne la struttura).
Qualche nota storica. I primi calcolatori programmabili (di enormi dimensioni) risalgono agli anni immediatamente
successivi alla II guerra mondiale. Comunque l'idea di computer fu messa a fuoco da Alan Turing, nel 1936, 15 anni
prima delle realizzazione pratica dei primi modelli di computer: egli formalizzò il concetto generale di algoritmo e mise a
punto il primo linguaggio di programmazione. I primi personal computer fanno la comparsa dopo il 1975, ma un
computer di piccole dimensioni fu messo a punto dalla Olivetti già nel 1964. A fianco è raffigurato un modello di HP85
(1979), il primo personal computer di piccole dimensioni (con incorporata una stampante, un lettore/registratore di dati e
programmi su cassette magnetiche) ad avere una grossa diffusione in tutto il mondo. Qualche anno dopo (1984) si
sviluppano (prima in ambito Mac e, da un certo punto in poi, soprattutto, in ambito Windows) personal computer che
utilizzano il mouse.
Successivamente (in Italia a partire dal 1986) si diffonde l'uso di Internet e, poi, la possibilità di impiegare software via
rete, in modo interattivo.

Dopo si sviluppano gli schermi sensibili al tatto, i cellulari diventano, per vari aspetti, dei piccoli personal computer, … Si sono diffusi negli ultimi anni
anche i tablet, delle specie di piccoli personal computer senza "tastiera fisica" (hanno lo schermo sensibile al tatto). Sono comodi per leggere testi e
scriverne (almeno per chi non ha problemi di dislessia), fare foto o filmati, ascolare brani musicali, …, ma non per fare cose più significative. Per dirla
con Dan Gookin, "se nella vita digitale vi sentite solo di passaggio, allora potete cavarvela con uno smartphone o un tablet e non aver mai bisogno di un
PC; se però avete bisogno di creare qualcosa, allora vi serve un computer" (da PCs For Dummies).

2. Ambienti di programmazione
 Un computer è in grado di tradurre in operazioni-macchina un programma scritto in un qualunque linguaggio di programmazione, a
patto che gli venga fornito in "input" anche un opportuno programma traduttore. La CPU di un computer può eseguire direttamente solo
un programma che le arrivi sotto forma di una sequenza di bit che, a gruppi, rappresentino direttamente le operazioni-macchina da
effettuare.
 Il linguaggio (che ha come alfabeto i simboli 0 e 1) in cui sono scritti questi programmi è detto linguaggio macchina.
 I linguaggi di programmazione evoluti (come quelli usati sopra) non descrivono direttamente singole operazioni-macchina, ma, come
abbiamo visto, • impartiscono comandi più sofisticati (a cui corrispondono più comandi del linguaggio-macchina), • usano come caratteri
quasi tutti i simboli della tastiera e • indicano i comandi con nomi che ne richiamano il significato; per questo vengono detti linguaggi
evoluti (o di alto livello). Per usarli il computer deve essere dotato di un ambiente di programmazione, cioè un programma che contiene
come sottoprogrammi:
• un programma redattore (editor) per registrare i caratteri battuti dall'utente; in genere è presente anche un help che richiama uso e
significato dei comandi, propone esempi, … .
Un editor è una applicazione per leggere/elaborare testi (come NotePad/BloccoNote in Windows) che registra i documenti codificando i vari caratteri
(lettere, cifre, virgole, spazi bianchi, e altri simboli) attraverso byte, ossia sequenze di 8 bit (i caratteri codificabili in questo modo sono 256; infatti le
diverse sequenze di 8 cifre che riesco a costruire con 0 e 1 sono 2·2·2·2·2·2·2·2 = 256). Il codice impiegato è chiamato ASCII (pronuncia: aski). Ad
esempio "P" è codificato con 01010000, l'"a capo" con 00001101.
• un programma traduttore per tradurre il programma in linguaggio evoluto in una sequenza di bit che sia la versione in linguaggio
macchina del programma.
 Ecco come viene trasformata da un programma taduttore l'assegnazione (scritta in un linguaggio Basic)
corrispondente alla formula a fianco:

 3
 2 ·-x
 w = ——————— + x·5
 9 - 1

ASSEGNAZIONE: W = (2^3*-X)/(9-1)+X*5

variabili->REGISTRI: R0 = (2^3*-R1)/(9-1)+R1*5

 + Traduzione in
 _________/ _________ istruzioni elementari:
 / * R2 = 2 ^ 3
 _____/ _____ ____/ ____ R3 = - R1
 * - X 5 R4 = R2 * R3
 __/ __ __/ __ R5 = 9 - 1
 ^ - 9 1 Grafo ad albero R6 = R4 / R5
 / \ | corrispondente R7 = R1 * 5
2 3 X R0 = R6 + R7

https://en.wikipedia.org/wiki/Dan_Gookin

 Nello stendere un programma in un linguaggio evoluto dobbiamo tener presenti delle regole di scrittura che garantiscano che il testo
battuto sia effettivamente traducibile in linguaggio macchina. L'insieme di queste regole di scrittura viene detto sintassi.
 Anche nella lingua naturale esistono delle regole sintattiche. Ad esempio uno dei modi in cui si può comporre una frase in italiano è:
articolo+nome+verbo dove articolo, nome e verbo devono essere raccordati in numero (sing./plu.) e, eventualmente, in genere (m/f), e
rispettare altre eventuali condizioni (es.: davanti ai nomi maschili singolari se iniziano con z, x, gn, pn, ps, s seguita da consonante o i
seguita da vocale si può mettere uno non un; negli altri casi si può mettere un, non uno). Ma si tratta di regole che spesso presentano
eccezioni e su cui spesso esistono opinioni contrastanti (ad es.qualcuno sostiene che davanti a pn - pneumatico, pneumotorace, … -
occorre, o si può, usare un). In realtà non si tratta di "regole" ma di modelli che usiamo per orientarci nella produzione/interpretazione dei
messaggi verbali.
 Poi, anche se ci esprimiamo in modo un po' sgrammaticato, in genere ci capiamo allo stesso (di fronte al cartello «attendi - lo cane
morzica» non abbiamo difficoltà a interpretarlo come «Attenti: il cane morsica»).
 Nel caso dei linguaggi di programmazione le regole sintattiche sono invece definite senza ambiguità ed eccezioni (per questo si parla
di linguaggi formali) e devono essere rispettate rigorosamente. L'help indica le regole da rispettare per costruire i programmi. Ad es. le
seguenti istruzioni dei programmi del 1º paragrafo:

k = 100/Tot t = document.Perc.t.value
sono tutte assegnazioni, che debbono avere la forma variable = expression. In altri linguaggi le assegnazioni debbono avere forme
diverse: variable <− expression o variable := expression o …
 Come nel caso del linguaggio comune la semantica si riferisce al significato di parole e frasi, così nel caso delle istruzioni essa si
riferissce al loro significato, ossia a come esse vengono tradotte in linguaggio macchina. In particolare nel caso degli errori, mentre
quelli sintattici impediscono la traduzione di un'istruzione in linguaggio macchina, quelli semantici avvengono in corso di esecuzione.
Un esempio. Se definisco f = function(x) x/(sqrt(4)-2) e poi a questa istruzione faccio seguire f(0), le istruzioni vengono
eseguite e poi viene segnalato un errore "semantico" con un messaggio tipo Not a Number.

3. Automatizziamo qualche procedimento di calcolo in JavaScript
 Vediamo ora qualche semplice programma realizzato in JavaScript. Incominciamo da quello considerato alla fine di §1, di cui
abbiamo già riportato un esempio d'uso e il testo. Ha la struttura di una pagina Web: è un documento in HTML (hypertext markup
language: linguaggio per contrassegnare ipertesti). Abbiamo visto come esso appare visualizzato da un browser (applicazione per
interpretare i documenti Html) e ne abbiamo visto il documento "sorgente", cioè il testo (redatto con un qualunque editor) comprendente
il contenuto verbale del documento e i tag (contrassegni), ossia i comandi racchiusi tra parentesi angolari (< e >) che contengono
indicazioni sui formati in cui visualizzare il contenuto verbale, le eventuali immagini da inserire, i collegamenti ad altri documenti, …, e
indicano le azioni da eseguire, descritte tra i comandi "script". I tag "head" ("intestazione"), <head> e </head>, delimitano la parte del
sorgente in cui sono contenute informazioni o comandi riferiti all'intero documento. Seguono comandi indicano ciò che viene
visualizzato; i tag "center" fanno sì che esso sia raffigurato "centrato"; invece
 (break) comanda un "a capo".
 La parte del documento organizzata in caselle (modulo) è tra i tag "form"; forma un oggetto (ossia un componente) a cui, con la
proprietà name è dato nome "Perc". Le caselle sono dei sotto-oggetti del modulo specificati con i tag "input"; a tre di esse, specificate
come "type" text, viene dato un nome (t, d, p) ed è assegnata "size" (dimensione) 25 (sono delle celle che possono accogliere 25
caratteri); sull'altra casella, specificata come "type" button, torniamo tra poco; "value" assegna un eventuale valore iniziale agli oggetti
precedenti; nel caso del "bottone" si tratta del nome che apparirà su di esso.
 Nel caso del sotto-oggetto di tipo "button" l'attributo "onClick" specifica che se si verifica l'evento "pulsante cliccato" viene avviata
l'azione (o metodo) "Calcola()" descritta dalla omonima function (così in Javascript vegono chiamati i sottoprogrammi). Il programma
in senso stretto è racchiuso tra i comandi "script" (che in questo caso è descritto non nel corpo della pagina-web, ma nella intestazione)
ed è costituito solamente dalla function Calcola().
 Il contenuto della function è delimitato da "{" e "}", e in questo è contenuto da una sola assegnazione. Essa legge i contenuti (ossia i
valori: value) delle caselle di nome "d" e "t" del modulo di nome "Perc" e calcola il valore da mettere nella casella "p". Nelle
assegnazioni è presente document: in questo modo viene indicata la pagina web attualmente visualizzata. In breve:
document.Perc.d.value indica la proprietà "value" della proprietà (o sotto-oggetto) "d" della proprietà (o sotto-oggetto) "Perc"
dell'oggetto "document".
 Number serve per specificare che gli oggetti contenuti nelle caselle sono da intendere come "numeri", non come "testi": la somma di 3
e 4 viene intesa, altrimenti, come 34 invece che come 7.
 Ricordiamo, infine, che nelle istruzioni di JS lettere diverse solo per la dimensione (come "a" e "A") sono considerate diverse.
 Abbiamo gà visto molti esempi di programmi in JS. Vediamone alcuni altri.

 Lo script divisori consente di trovare tutti i numeri interi positivi per cui è divisibile un dato numero intero positivo (2754 nel caso
esemplificato).

 Lo script divPrimi ne trova invece tutti quelli che sono numeri primi, ossia che non sono divisibili per altri numeri positivi.

 Lo script scomponi trova invece i numeri primi il cui prodotto è il numero indicato.

 Tutti gli altri divisori si ottengono moltiplicando alcuni di questi numeri. Ad esempio posso ottenere 459 calcolando 3*3*3*17.
 2 Trova i numeri primi per cui sono divisibili 12345678 e 123456789.

file:///C:/Users/dapue/Documents/macosa/js/divisor.htm
file:///C:/Users/dapue/Documents/macosa/js/divisori_p.htm
file:///C:/Users/dapue/Documents/macosa/js/divisori_p2.htm

 Provate ad eseguire lo script illustrato a lato, relativo al "gioco del 3k+1", a cui potete accedere dallo script gioco. Il gioco è spiegato
nello script stesso. Esso termina quando si arriva ad 1.
 Si arriva sempre ad 1 o ci sono numeri a partire dai quali il gioco non termina? Provate!

 3 Vi sono input minori di 31 che danno un output maggiore di 106?

 Gli script consentono di visualizzare anche immagini animate. Esamina lo script Pitagora.

4. Esercizi
 e1 Abbiamo descritto una funzione H nel modo indicato a lato. Cerca di descrivere H(x) sia con un

grafo ad albero, sia nella scrittura ad un piano (quella che useresti in un programma)
 2 + 3x 5
H(x) = 3 + —————— - ———
 7 -2x

 e2 Scrivi il termine rappresentato dal grafo ad albero seguente sia in una scrittura "a più piani" che in una scrittura "ad 1 piano" (qui
RAD indica la radice quadrata).

 +
 _______________/ _______________
 - /
 _______/ _______ _______/ _______
 * 3 * +
 __/ __ __/ __ __/ __
A 2 RAD 4 A B
 |
 B

 e3 Esamina lo script SommaAngoli. Che cosa viene spiegato e dimostrato con esso?

 e4 Esamina lo script Triangoli e i relativi esempi. Poi impiegalo per determinare
l'inclinazione di una strada che avanza orizzonatalmente di 19 metri e sale di 3 metri.

1) Segna con l'evidenziatore, nelle parti della scheda indicate, frasi e/o formule che descrivono il significato dei seguenti termini:
programma traduttore (§2), sintassi (§2), tag (§3), form (§3).
2) Su un foglio da "quadernone", nella prima facciata, esemplifica l'uso di ciascuno dei concetti sopra elencati mediante una frase in cui esso venga
impiegato.
3) Nella seconda facciata riassumi in modo discorsivo (senza formule, come in una descrizione "al telefono") il contenuto della scheda (non fare un
elenco di argomenti, ma cerca di far capire il "filo del discorso").

script: piccola CT grande CT isto isto con % boxplot striscia 100 60 ordina Grafici Perc divisori divPrimi scomponi
gioco Pitagora SommaAngoli Triangoli

file:///C:/Users/dapue/Documents/macosa/js/gioco.htm
file:///C:/Users/dapue/Documents/macosa/js/pitagora.htm
file:///C:/Users/dapue/Documents/macosa/js/180.htm
file:///C:/Users/dapue/Documents/macosa/js/triangle.htm
file:///C:/Users/dapue/Documents/macosa/js/pocket.htm
file:///C:/Users/dapue/Documents/macosa/js/cal.htm
file:///C:/Users/dapue/Documents/macosa/js/istod2b.htm
file:///C:/Users/dapue/Documents/macosa/js/istod2.htm
file:///C:/Users/dapue/Documents/macosa/js/boxplot.htm
file:///C:/Users/dapue/Documents/macosa/js/striscia.htm
file:///C:/Users/dapue/Documents/macosa/js/fu0_pie3.htm
file:///C:/Users/dapue/Documents/macosa/js/60.htm
file:///C:/Users/dapue/Documents/macosa/js/ordin.htm
file:///C:/Users/dapue/Documents/macosa/js/fun.htm
file:///C:/Users/dapue/Documents/macosa/js/percent.htm
file:///C:/Users/dapue/Documents/macosa/js/divisor.htm
file:///C:/Users/dapue/Documents/macosa/js/divisori_p.htm
file:///C:/Users/dapue/Documents/macosa/js/divisori_p2.htm
file:///C:/Users/dapue/Documents/macosa/js/gioco.htm
file:///C:/Users/dapue/Documents/macosa/js/pitagora.htm
file:///C:/Users/dapue/Documents/macosa/js/180.htm
file:///C:/Users/dapue/Documents/macosa/js/triangle.htm

